Submodules
deploy
Keras Model instance <https://www.tensorflow.org/api_docs/python/tf/keras/Model>
_TensorFlow SavedModel <https://www.tensorflow.org/guide/saved_model>
_ (as path to directory or.zip
file)ONNX model file <https://learn.microsoft.com/en-us/windows/ai/windows-ml/get-onnx-model>
_ (as path to.onnx
file)TensorFlow Lite file <https://www.tensorflow.org/lite/guide>
_ (as bytes, or path to any file that is not.zip
or.onnx
)
- Must be a numpy array or
.npy
file. - Each element must have the same shape as your model’s input.
- Must be representative of the range (maximum and minimum) of values in your training data.
model
, model_output_type
, and model_input_type
. For example, the openmv
deployment option is only available if model_input_type
is set to ImageInput
. If
you attempt to deploy to an unavailable target, you will receive the error Could not deploy: deploy_target: ...
.
Parameters
- model: pathlib._local.Path | str | bytes | Any
- model_output_type: edgeimpulse.model.output_type.Classification | edgeimpulse.model.output_type.Regression | edgeimpulse.model.output_type.ObjectDetection
- model_input_type: edgeimpulse.model.input_type.ImageInput | edgeimpulse.model.input_type.AudioInput | edgeimpulse.model.input_type.TimeSeriesInput | edgeimpulse.model.input_type.OtherInput | None = None
- representative_data_for_quantization: pathlib._local.Path | str | bytes | Any | None = None
- deploy_model_type: str | None = None
- engine: str = ‘tflite’
- deploy_target: str = ‘zip’
- output_directory: str | None = None
- api_key: str | None = None
- timeout_sec: float | None = None
list_deployment_targets
- api_key: str | None = None
list_engines
deploy()
’s engine
parameter.
Returns:
List[str]: List of engines
Return
List[str]
list_model_types
deploy()
’s deploy_model_type
parameter.
Returns:
List[str]: List of model types
Return
List[str]
list_profile_devices
device
field when calling edgeimpulse.model.profile()
.
Parameters
- api_key: str | None = None
profile
device
, the results will also include estimates for that specific
device. A list of devices can be obtained from edgeimpulse.model.list_profile_devices()
.
You can call .summary()
on the response to obtain a more readable version of the most relevant
information.
Parameters
- model: pathlib._local.Path | str | bytes | Any
- device: str | None = None
- api_key: str | None = None
- timeout_sec: float | None = None