ClassifyApi
- api_client=None
Methods
classify_image
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- image: pydantic.types.StrictStr
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- **kwargs
classify_sample
/v1/api/{projectId}/classify/v2/{sampleId}
). Classify a complete file against the current impulse. This will move the sliding window (dependent on the sliding window length and the sliding window increase parameters in the impulse) over the complete file, and classify for every window that is extracted.
Parameters
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- include_debug_info: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘Whether to return the debug information from FOMO classification.’, extra=)] = None
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- **kwargs
classify_sample_by_learn_block
/v1/api/{projectId}/classify/anomaly-gmm/v2/{blockId}/{sampleId}
) instead. Classify a complete file against the specified learn block. This will move the sliding window (dependent on the sliding window length and the sliding window increase parameters in the impulse) over the complete file, and classify for every window that is extracted.
Parameters
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- block_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Block ID’, extra=)]
- **kwargs
classify_sample_by_learn_block_v2
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- block_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Block ID’, extra=)]
- variant: Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(default=PydanticUndefined, description=‘Keras model variant’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs
classify_sample_for_variants
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- variants: Annotated[pydantic.types.StrictStr, FieldInfo(default=Ellipsis, description=‘List of keras model variants, given as a JSON string’, extra=)]
- include_debug_info: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘Whether to return the debug information from FOMO classification.’, extra=)] = None
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs
classify_sample_v2
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- include_debug_info: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘Whether to return the debug information from FOMO classification.’, extra=)] = None
- variant: Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(default=PydanticUndefined, description=‘Keras model variant’, extra=)] = None
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs
get_classify_job_result
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- feature_explorer_only: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘Whether to get only the classification results relevant to the feature explorer.’, extra=)] = None
- variant: Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(default=PydanticUndefined, description=‘Keras model variant’, extra=)] = None
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs
get_classify_job_result_page
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- limit: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Maximum number of results’, extra=)] = None
- offset: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Offset in results, can be used in conjunction with LimitResultsParameter to implement paging.’, extra=)] = None
- variant: Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(default=PydanticUndefined, description=‘Keras model variant’, extra=)] = None
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs
get_sample_window_from_cache
- self
- project_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Project ID’, extra=)]
- sample_id: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample ID’, extra=)]
- window_index: Annotated[pydantic.types.StrictInt, FieldInfo(default=Ellipsis, description=‘Sample window index’, extra=)]
- impulse_id: Annotated[pydantic.types.StrictInt | None, FieldInfo(default=PydanticUndefined, description=‘Impulse ID. If this is unset then the default impulse is used.’, extra=)] = None
- truncate_structured_labels: Annotated[pydantic.types.StrictBool | None, FieldInfo(default=PydanticUndefined, description=‘If true, only a slice of labels will be returned for samples with multiple labels.’, extra=)] = None
- **kwargs